ctc technology & energy

engineering & business consulting

Broadband Technologies: Understanding the Full Range of Technical Options and Opportunities

November 5, 2015

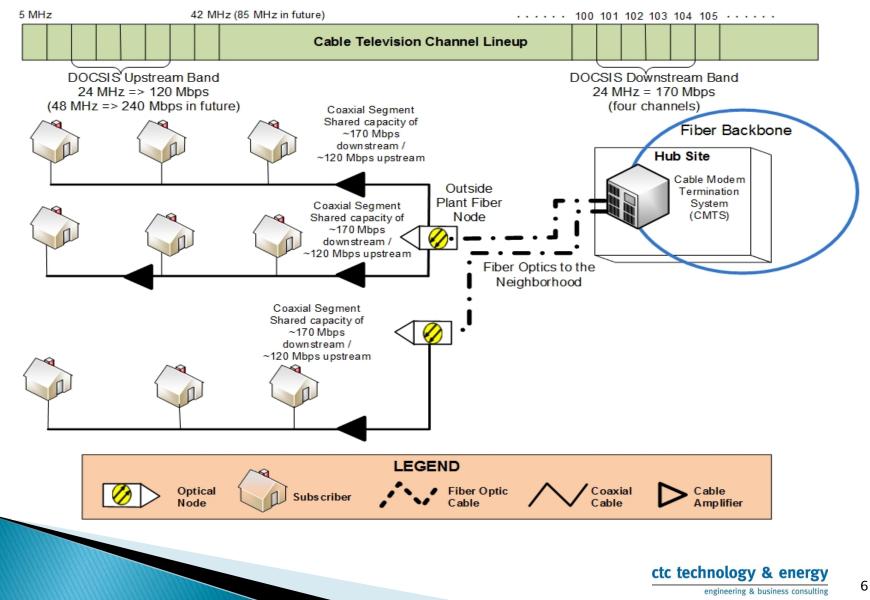
Agenda

Overview of broadband access technologies

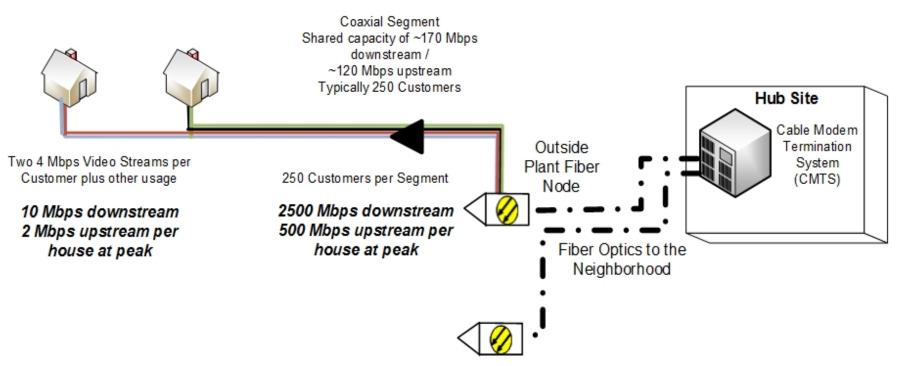
- Cable (DOCSIS)
- Fiber to the Premises (FTTP)
- Digital Subscriber Line (DSL)
- 3G/4G
- Satellite
- TV White Space
- Comparison of competing technologies

A few key terms

- Spectrum: the portion of the Radio Frequency (RF) or optical spectrum used for communications signals
 - Measured by frequency how fast the wave is cycling in hertz (Hz)
 - Optical signals measured by the length of the wave period (wavelength) in nanometers (nm)
- Capacity, data rate, and speed: used interchangeably, and generally mean the number of bits per second (bps) carried over a link
 - More spectrum generally means more speed, but not necessarily on a 1:1 basis
 - Many factors impact "spectral efficiency" or bits per Hz possible with a given technology – interfering noise
- Oversubscription: amount of capacity offered to subscribers over a shared link beyond what is can support at any given time – generally referenced in terms of a ratio (i.e. 100:1)


Cable

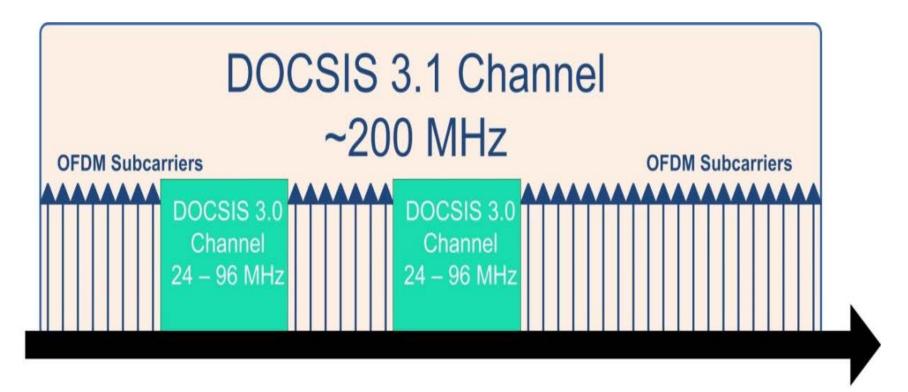
- Refers to hybrid fiber-coaxial (HFC) networks
 - Fiber from a headend or hub to neighborhood nodes
 - Coaxial cable in the "last mile" with active amplifiers along the way
- Data is transmitted in dedicate channels alongside video channels
- HFC active components provide a fixed amount of usable spectrum
 - 750 MHz and 860 MHz are common, 1 GHz and above available
- Fixed asymmetrical split of spectrum between upstream and downstream
 - Only from 5 MHz to 42MHz for upstream generally
 - Significant limitation to symmetrical services


DOCSIS 3.0

- Data Over Cable Service Interface Specification (DOCSIS) is the industry-adopted standard for cable modem technology
- DOCSIS 3.0 is the current standard in the U.S. for advanced broadband services
 - Ability to dedicate per user capacity
- Bonding of 4 or more individual 6 MHz channels
 - Necessary to provide 100 Mbps and higher download speeds
 - Capable of providing "gigabit" service with more channels
 - 32-channels DS / 8 channels US provide 1.37 Gbps DS and 245 Mbps US

Example HFC / DOCSIS 3.0 Architecture

High oversubscription in cable networks



Each node may serve several hundred customers each
Not possible for all customers to simultaneously sustain transmission at even a significant percentage of the advertised "up to" speeds at the same time

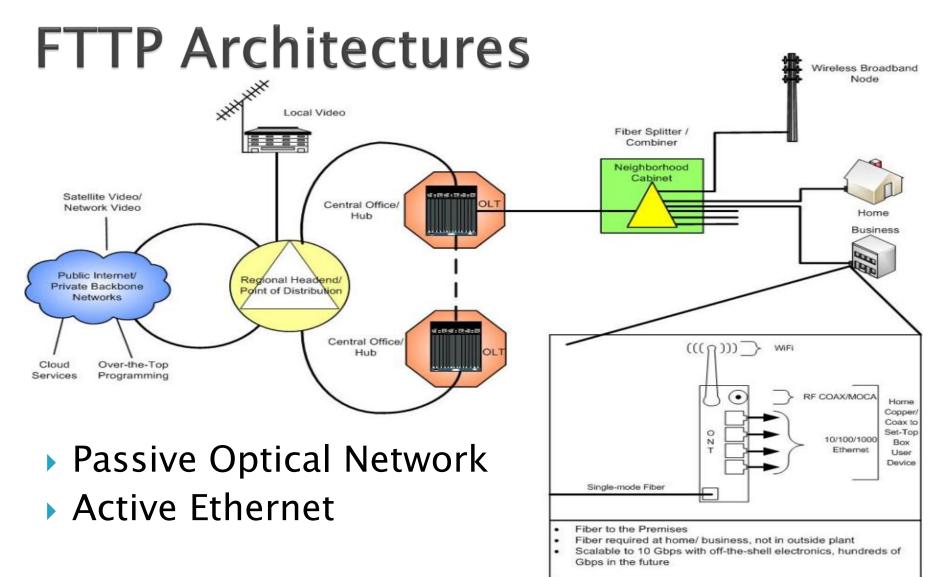
The upgrade path to DOCSIS 3.1

- Can theoretically increase capacity to beyond 10 Gbps downstream and 1 Gbps
- Represents migration away from traditional 6 MHz cable TV concept
 - Requires large amounts, or all system capacity dedicated to data
 - Might require operators to migrate to IPTV
- Typically will require costly replacement of HFC infrastructure to get full benefit of the upgrade
 - Active components (amplifiers and nodes) change spectrum split and increase total capacity
 - Passive components (drop cable and splitters)

DOCSIS 3.1 enables much more of the existing spectrum to be used

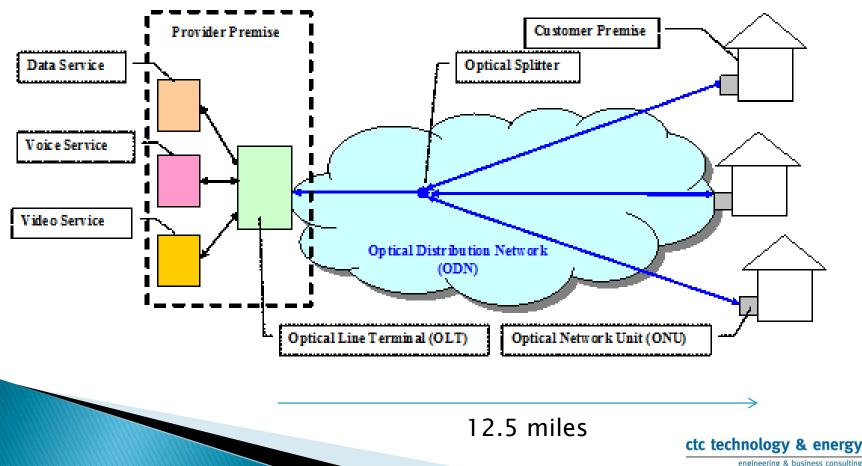
Cable Pros and Cons

Pros	Cons
At least 170 Mbps (down)/120 Mbps (up) with DOCSIS 3.0	Maximum speed limited by physics of cable plant
Potential to increase capacity even further by segmenting network	Capacity shared by all customers in a given network segment
DOCSIS 3.1 promises greater potential upgrades in capacity	Capacity upgrades require extensive physical improvements to the network


Issues for consumers and providers – Cable

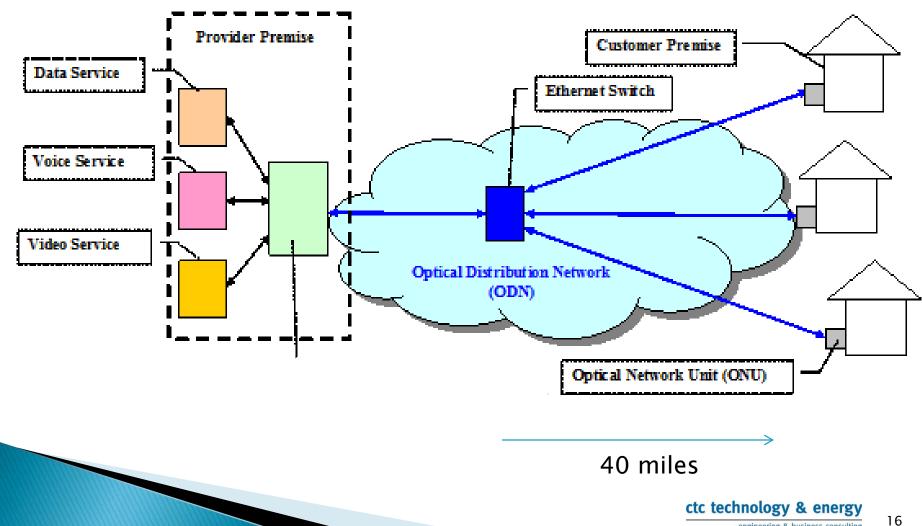
Providers	Consumers	
Potential to increase capacity by adding fiber (segmenting network) or bonding channels	Capacity shared by all customers in a given network segment	
Upgrading to DOCSIS 3.1 will expand capacity	Speeds decrease during bandwidth "rush hours" when more users simultaneously use greater amounts of data	
Maximum speed limited	Maximum speed limited	

Fiber-to-the-Premises (FTTP)


- FTTP more capable than previous wireline communications technologies
 - Capacity to 1 Gbps and beyond

- Can support any foreseeable residential and business needs
- Can support cell site interconnection
- Capacity scalable without new construction
 - An individual fiber strand can support 10 Gbps, 100 Gbps, etc. – virtually limitless, constrained only by the electronics
- Low maintenance (limited or no external electronics)
- In greenfield- construction cost same as any other medium

FTTP Architecture: Passive Optical Network/ **Distributed Tap**


PON Access Network

Passive Optical Network/ Distributed Tap

- Fiber shared by multiple users from the CO or fiber distribution cabinet (FDC) to a splitter near customer
 - Reduces construction and electronics costs
- Individual fiber from splitter to customer premises
- Splitter is a passive, non-powered component
- Range of technologies
 - GPON: 2.4 Gbps DS, 1.2 Gbps US, 10–GPON: 10 Gbps DS, 2.5 Gbps US (timeslotting)
 - WDM-PON (different wavelengths)
- Standard PON: 32- or 64-way symmetrical splitter
- Distributed tap splits optical power unevenly drops off one customer at a time
 - Same electronics architecture, but more cost effective in rural deployments

FTTP Architecture: **Active Ethernet**

Active Ethernet

- Dedicated fiber from CO/substation/cabinet to each customer
- Requires power at cabinet
- Higher capacity, longer range
- Typically greater cost per customer
- Possible to operate a hybrid network
 - Premium customers receive Active Ethernet
 - Others get PON
 - Both can offer symmetrical gigabit services (albeit with different levels of oversubscription)

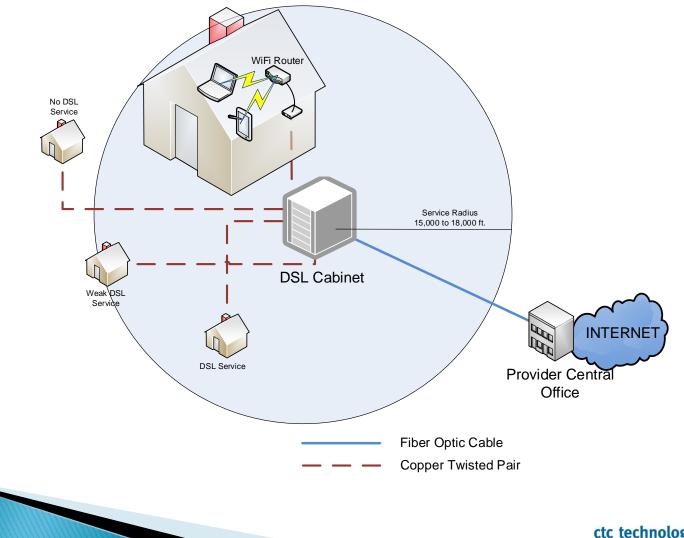
FTTP Pros and Cons

Pros	Cons
Higher capacity and more reliability than cable systems	Capacity limited by the processing power of the networking equipment connected to the fibers
Optical light signals can travel great distances (up to 50 miles between electronics) with minimal signal deterioration	Highest-capacity connections require direct fiber connections to customer premises
Optical fibers do not conduct electricity and are immune to electromagnetic interference	

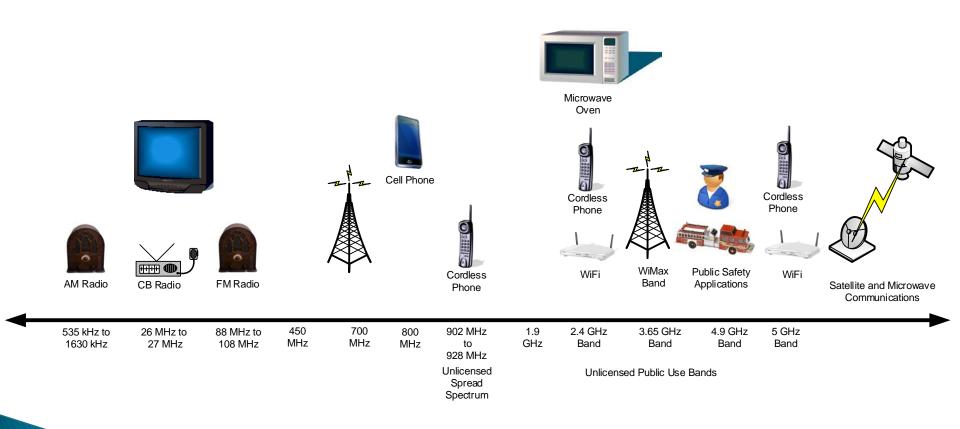
Issues for consumers and providers – FTTP

Providers	Consumers		
Fiber networks are more reliable and require less maintenance than cable networks	Some FTTP operators (e.g., Verizon FiOS) split the fiber capacity in a neighborhood cabinet to connect 16 to 32 customers		
Fiber can be deployed where conductive materials would be dangerous, such as near power lines	Actual "dedicated" capacity per customer is less than maximum advertised speed due to splitting of signal		
Fiber can provide a flexible, high- speed backbone for wireless services	Even shared signals are generally able to sustain a constant 100 Mbps to all users in the downstream direction, simultaneously		

Cable vs. Fiber

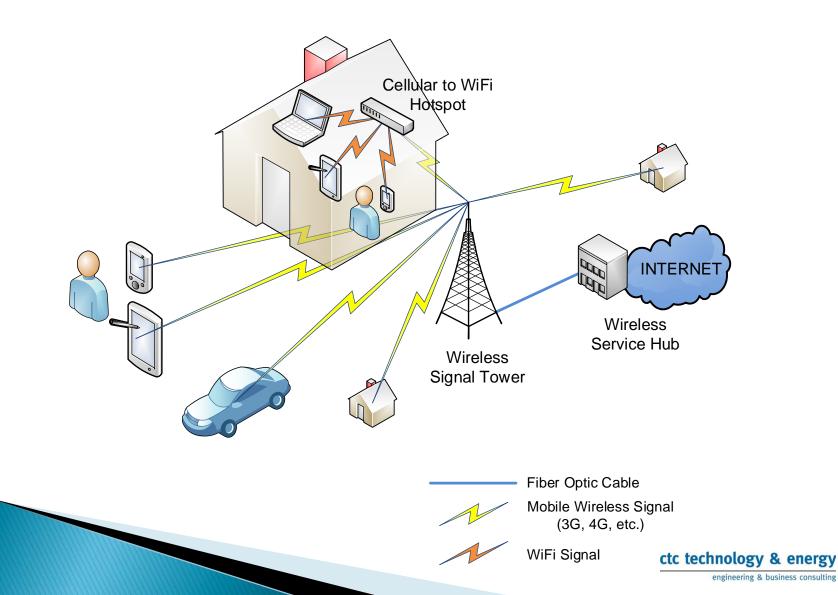

Factor	Technology		
Factor	Cable	Fiber	
Availability	Ubiquitous in populated areas	Limited deployment	
Typical Speeds	Download speeds up to 150 Mbps (300 Mbps in some markets); lower upload speeds	Symmetrical speeds of 100 Mbps to 1 Gbps or more	
Sustainability of Peak Speeds	Not sustainable for long periods or for large percentage of users	Sustainable for all users simultaneously	
Scalability	Requires more expensive physical and electronic upgrades	Requires minor equipment upgrades	

Digital Subscriber Line (DSL)


- Deployed standalone or as a compliment to fiber-tothe-curb (FTTC)
- Uses legacy twisted pair copper wires (telephone wires)
- Uses modulation technology similar to LTE, Wi-Fi, DOCSIS 3.1 (OFDM)
 - Twisted pair wire is a dedicated connection (not shared spectrum), but comparably unhospitable to data communications (noise)
- Availability and speeds limited by distance to the CO
 - Typically less than 15 Mbps within 15,000 feet

 Very-high-bit-rate digital subscriber line 2 (VDSL2) can offer 50 Mbps to 250 Mbps within 1 km to 0.5 km (best case)

DSL


Wireless spectrum is a limited, shared resource

Fixed cellular wireless (3G/4G)

- Third / Fourth generation (3G/4G) cellular technologies
 - Represents an evolution of very different cellular technologies – separate CDMA and GSM tracks
 - 4G refers to a range of competing technologies: Evolved High Speed Packet Access (HSPA+), WiMAX, and Long-Term Evolution Release 8 (LTE)
 - The aptly named LTE has become defacto standard for nearly all commercial carriers
- The same network supports fixed and mobile services
 - Represents a competitor to wireline services
 - CPE consists of mobile gateway with Wi-Fi hotspot or wired Ethernet port for local connection

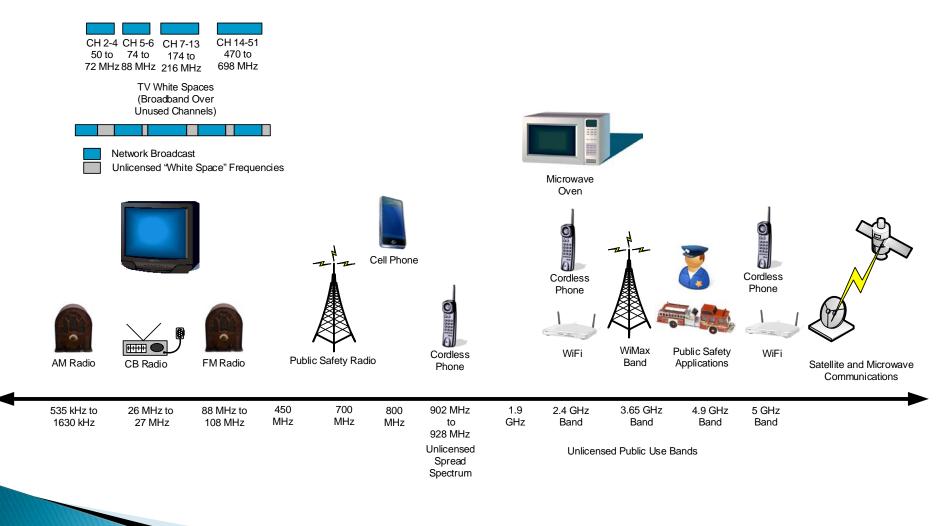
Fixed cellular wireless illustrated

Fixed cellular wireless (3G/4G)

- Theoretical 4G speeds
 - 42 Mbps 100 Mbps downstream
 - 11.5 Mbps 50 Mbps upstream
- Real world 4G speeds vary greatly
 - 5-10 Mbps downstream and 1 -2 Mbps upstream
 - Number of users connected to a given base station
 - Physical obstructions and distance cause signal attenuation
- Spectrum is limited
 - Deployed in expensive, licensed bands, typically comprised of 5 - 20 MHz channels
 - Capacity is expanded by reducing power and shrinking the coverage area of each base station (reuse of limited spectrum)
 - Data caps limit usefulness as a wireline replacement expensive if used for more than casual web browsing

Application performance over cellular wireless options

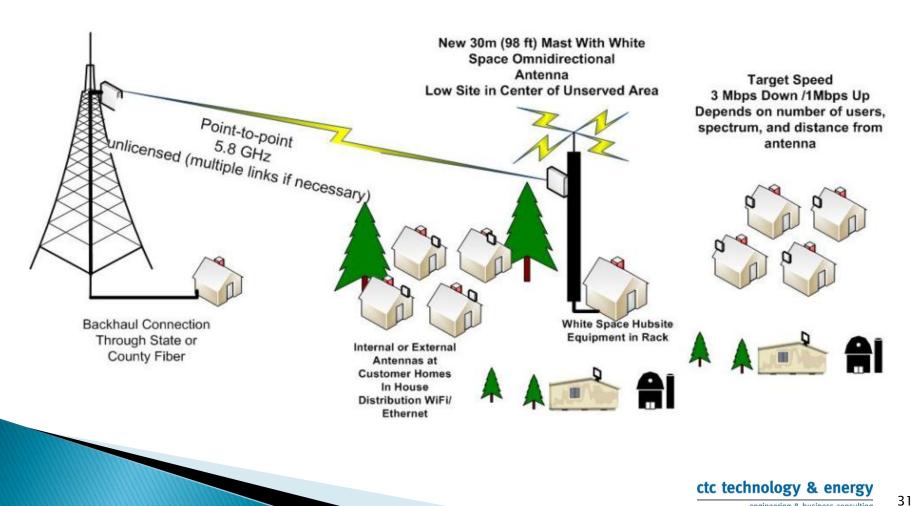
	Technology (Download/Upload Service Speeds)		
	2G/2.5G-EDGE/GPRS,	3G-EVDO Rev A,	4G - WIMAX/LTE
Applications	1xRTT	HSPA+ (600 Kbps-	(1.5 Mbps-6
	(128 Kbps-300 Kbps/	1.5 Mbps/500	Mbps/500 Kbps-
	70 Kbps-100 Kbps)	Kbps-1.2 Mbps)	1.2 Mbps)
Simple text e-mails without attachments (50 KB)	Good (2 seconds)	Good (1 second)	Good (1 second)
Web browsing	Good	Good	Good
E-mail with large attachments (500 KB)	OK (14 seconds)	Good (3 seconds)	Good (1 second)
Play MP3 music files (5 MB)	Bad (134 seconds)	OK (27 seconds)	Good (7 seconds)
Play video files (100 MB for			
a typical 10-min. YouTube video)	Bad (45 minutes)	OK (9 minutes)	Good (3 minutes)
Maps and GPS for	Ded	OK	Cood
smartphones	Bad	ОК	Good
Internet for home	Bad	ОК	Good

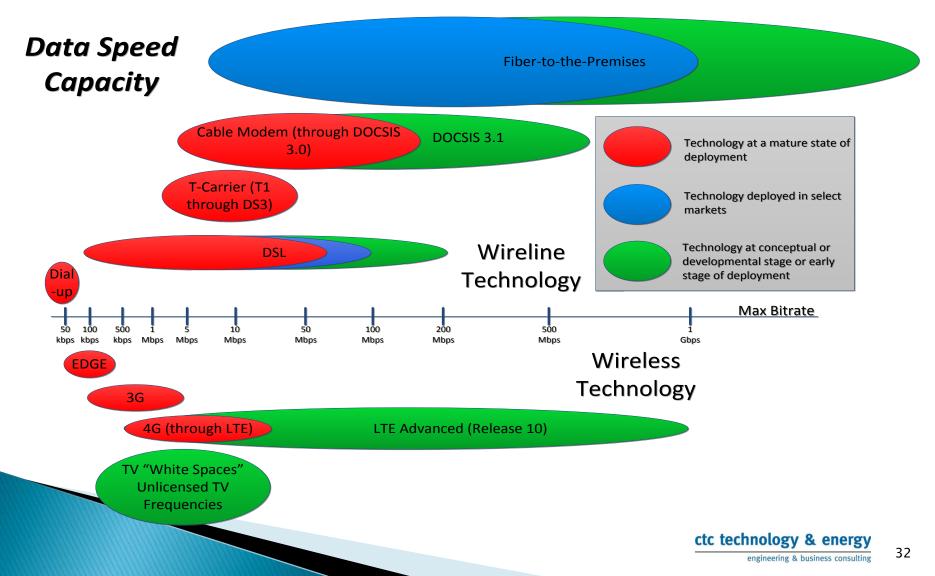

Satellite Broadband

- Available in the most rural or urban environments
 - Anywhere you can mount a dish with line of site to satellite
- Fundamentally constrained by physics and number of users sharing capacity
 - High latency (~250 ms round trip) makes it unsuitable for VoIP and videoconferencing
 - Susceptible to rain fade
- ▶ 15 Mbps DS, 1–2 Mbps US
 - Data caps in the 25 GB range (1/10th that of wireline options at 3x the price)

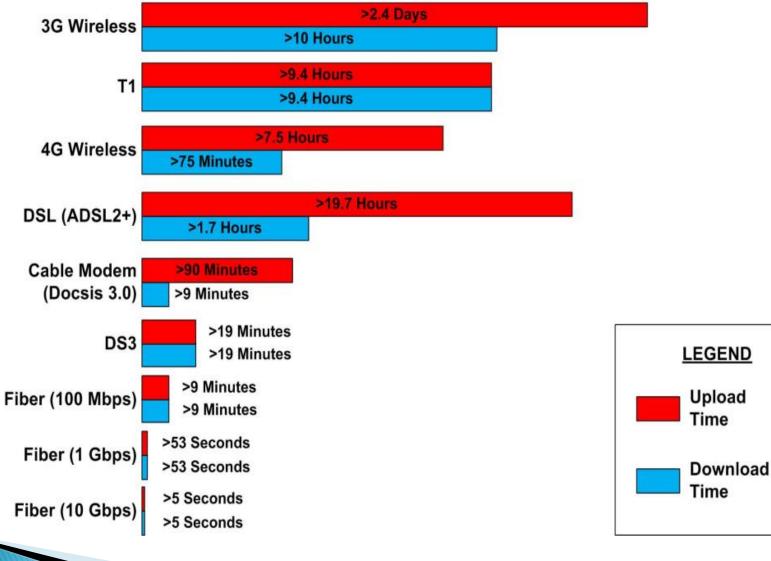
TV White Space Technology

- Slowly emerging technology using unlicensed technology in spectrum freed up by digital TV transition
 - UHF/VHF spectrum represents the "sweet spot" in terms of capacity and propagation characteristics
 - Despite being unlicensed, operates a higher power for transmission distances of up to 10 km
 - TV Band Devices (TVBD) must lookup available channels in national database to avoid interference
- Only viable in markets with open channels
 - Could be a key option in rural markets where wireline and even cellular infrastructure is underdeveloped and costly
 - Not widely deployed, but starting to see some rural WISP's use TVWS


TVWS spectrum


ctc technology & energy engineering & business consulting

TV White Space Sample Deployment


White Space UHF TV (470 – 786MHz) Service Up to 12kms (7.5 miles)

Technologies and Speeds: *Fiber Ahead of All Others*

Minimum Time Required for Downloading and Uploading a 5 GB File

